

Republic of Tunisia Ministry of Agriculture , Water and Fisheries Resources IRESA

High Agronomic Institute of Chott Mariem-Sousse-TUNISIA Ist International Conference SUSTAINABLE AGRICULTURE:TOOLS AND INNOVATIONS (AGRINOV 2021) Beni Mellal- Marocco

Valorization of squash (*Cucurbita maxima* Duch) Biodiversity: approaches and main results

<u>Neji Tarchoun*,</u> Khaoula Hamdi, Najla Mezghani and Wassim Saadaoui

* <u>nejitarchoun@yahoo.fr</u>

INTRODUCTION

Biodiversity in Tunisia is quite important for plant and animal

species : more than 2200 indigenous plant species and 550

animal species were recently inventoried (NGB, 2014)

These local varieties have better adaptability to climate change and contribute to sustainable agriculture development and ecosystem balance

However, 10% of this biodiversity is in extinction phase due to several causes

For plant species, there are more than 1700 tree species and 250 vegetables species: fruit vegetables (pepper, melon, squash...) root vegetables (carrots) and leafy vegetables (parsley, celery)

Squash (*Cucurbita maxima* Duch.) is a member of economically important Cucurbitaceae in Tunisia, more than 3800 ha are cultivated in three main regions: North, Center and Sahel, with an average yield of 70t/ha (Anonymous, 2020)

Tunisia is one of the important diversity center for cultivated cucurbits (adaptation, natural selection and farmers selection); However, dispite the large genetic variability of squash local populations, a high heterogenity on agro-morphological characteristics is recorded At the research level, the diversity of genetic ressources of squash has a low interest;

In the current research program, the aims are:(i) Conduct the first collection and characterization of squash local populations,

(ii) Conserve this local plant diversity in the NGB,

(iii) Maintain by self pollination the main accessions and start a breeding program.

Material and Methods

Fifteen Tunisian landraces of squash (*Cucurbita maxima* Duch., Tab.1) collected from different geographic regions of Tunisia during the period extending from 2018 to 2020 were used in the present study

Figure 1. Geographic distribution of *Cucurbita maxima* collection used in this study. The names of provinces and locations are in bold.

Table1. Description of Tunisian squash landraces used in the present study

Landrace invent	tory Local name	Origin	Latitude	Longitude	Short description
NGBTUN745	Batati Green	Ariana(Kalaat Andalous)	37°033"N	10°11'7"E	±rounded fruit, light green skin, green flesh
NGBTUN746	Batati orange	Siliana (SidiHamada)	35°57'28"N	9°32'57"E	±rounded fruit, orange skin, light orange flesh
NGBTUN747	Galaoui	Ariana (Kalaa Andalous)	37°033"N	10°11'7"E	raised fruit with basal tip, green skin, green flesh
NGBTUN748	Karkoubi orange	Sousse (Sidi Bouali)	35°54'22.21"N	10°32'47.81"E	Flattened fruit, dark yellow skin, yellow flesh
NGBTUN749	Batati yellow spotted with white	Siliana (SidiHamada)	35°57'28"N	9°32'57"E	±globes fruit, orange skin spotted with white, orange flesh
NGBTUN750	Batati white	Monastir (Sahline)	35°45'05"N	10°42'39"E	globes fruit, white skin, white flesh
NGBTUN751	Bejaoui Green	Siliana (SidiHamada)	35°57'28"N	9°32'57"E	Flattened fruit, dark green skin, light green flesh
NGBTUN752	Batati yellow	Siliana (North)	35°57'28"N	9°32'57"E	rounded fruit, yellow skin, light orange flesh
NGBTUN753	Béjaoui Green	Siliana (South)	35°57'28"N	9°32'57"E	Flattened fruit, dark green skin, light green flesh

NGBTUN1004	Galaoui large seed	s Ariana(Kalaat Andalous)	37°033"N	10°11'7"E	raised fruit with basal tip, green skin, white green flesh
NGBTUN1005	Galaoui smoll seeds	Ariana(Kalaat Andalous)	37°033"N	10°11'7"E	raised fruit with a big basal tip, green skin, white green flesh
NGBTUN1006	Karkoubi orange	Monastir (Sahline)	35°45'05"N	10°42'39"E	Flattened fruit, dark yellow skin, yellow flesh
NGBTUN1007	Batati Green	Siliana	35°57'28"N	9°32'57"E	rounded fruit, green skin, green flesh
NGBTUN1008	Batati Green	Monastir (Teboulba)	35°45'05"N	10°42'39"E	rounded fruit, flat stem end, green skin, light green flesh
NGBTUN1009	Bejaoui spotted wit yellow	th Siliana (SidiHamada)	35°57'28"N	9°32'57"'E	rounded fruit with flat stem end, spotted with yellow light green skin, light green flesh

Figure 2 .Variability of fruits and seeds of different accessions collected from the different prospected zones: (a) and (b) from Sidi-Hmeda Siliana, (c) and (d) from Kalaat-Andalous, (e) and (f) of Chott-Meriem, (g) and (h) of Sidi-Bou-Ali and (i) and (j) of Sehline

The diversity of mature fruit size, shape and color for Squash *populations* which were collected from three regions (North, Center, Sahel)

30 plants for each ecotype (10 per replication) were evaluated for the morphological characteristics based on UPOV's squash descriptor list (UPOV, 2007)

Quantitative traits of different parts (seeds, leaves, flowers and fruits) were evaluated per plant

Fourteen morphological characteristics were assessed per plant, starting from the seed till the stage of mature fruit

Chemical parameters (Ca2+, Mg2+ and K+) were analyzed using an atomic absorption spectrophotometer (Kim et al., 2007)

Total carotenoids content was determined following the method of Lucia et al.(2015).

Molecular characterization using 60 RAPD and 17 ISSR markers

Principal Component Analysis (ACP)was used to group different ecotypes into homogenous classes, while quantitative traits for all characteristics and chemical parameters were submitted to SAS (version 9.2) analysis; means were separated by Duncan's multiple range test at 5% level.

RESULTS

Establishment of a Tunisian map for squash population

Conservation of this national plant biodiversity at the National Gene Bank

Substantial genetic diversity was recorded for the majority of traits; morphological variation was most apparent in fruit characteristics. Most populations in this study had transverse broad elliptical fruit (75.6%), a medium skin thickness (89.12%), a medium flesh thickness (57.89%) and a big cavity diameter (94.7%)

Frequency distribution of main fruits characteristics (10/ landrace)

Character	Description	Frequency (%)
	Heavy > 10	
Fruit weight (Kg)	Medium 5-10	75,8
	Light < 5	3,0
	Transverse elliptic	16,20
Fruit shape	Transverse broad ellip.	75,61
	Cylindrical	8,19
	Long > 10	3,75
Peduncle length (cm)	Medium 5-10	89,12
	Short <5	7,13
	Thick >1	
Skin thickness (cm)	Medium 0,1- 1	
	Thin <0,1	100
	Thick >5	38,27
Flesh thickness (cm)	Medium 3- 5	57,89
	Thin <3	3,84
	Big>20	94,7
Cavity diameter (cm)	Medium 15-20	5,2
	Small <15	0,1
	High >300	36,32
Saad number/fruit	Medium 200-300	59.48

3. Flowers characteristics

3.1. Number of female flowers per plant (FF), male flowers (MF), FF/ MF and length of male flower (MFSL) and female flower (FFSL) sepals

Ecotype	FF	FM	FF/MF	MFSL (cm)	FFSL (cm)
E1	11,86 abc*	97,23 ab	0,13 abcd	3,30 abcd*	3,09 bc
E2	14 ,00ab	100,97 ab	0,14 abcd	3,06 bcd	2,77 c
E3	12,63 ab	111,03 a	0,12 bcd	3,88 a	2,94 c
E7	13,70 ab	94,63 ab	0,15 abc	3,14 abcd	2,67 cd
E8	11,33 abc	82,17 abcd	0,16 abc	3,20 abcd	3,10 bc
E10	9,57 bcd	79,00 abcd	0,14 abcd	3,47 abc	3,32 bc
E11	6,33 de	77,33 abcd	0,08 de	3,24 abcd	3,68 ab
E4	14.43 a	90,63 abc	0,18 ab	3,13 abcd	3,18 bc
E6	12,90 ab	97,9 ab	0,13 abcd	2,97 cd	2,78 c
E9	12 ,87 ab	98,27 ab	0,13 abcd	3,30 abcd	2,95 c
E12	13,33 ab	78,42 abcd	0,18 a	3,19 abcd	3,91 a
E13	6,33 de	68 ,00bcde	0,094 cd	3,22 abcd	2,89 c
E15	7,74 cd	39,5 e	0,03 e	2,74 d	1,90 e
E5	5,68 e	59,18 dce	0,03 e	3,09 abcd	2,94 c
E14	5,82 e	72,93 bcde	0,03 e	3,69 ab	2,18 ed

*Means followed by the same letter are statistically different at 5% (Duncan test)

1. Seed characteristics

Ecotype	Туре	Length (cm)	Width (cm)	Colour	(L/W)	Weight of 100 seeds (g)
E1	Batati	2 ,41f*	1,41abc	3	1,71 e	40 c
E2	Batati	2,57f	1,43ab	2	1,80de	46 a
E3	Batati	1,80h	1, 34de	2	2,10 b	43 b
E4	Kerkoubi	2,27g	1 ,25gh	2	1,81cde	28 f
E5	Bejaoui	1,80h	0 ,90j	3	1,80ed	14 h
E6	Kerkoubi	2,31g	1 ,23gh	2	2,08b	30 e
E7	Batati	2,78a	1,38bcd	2	1,93c	42 b
E8	Batati	2,30g	1,21h	2	1,85cd	26 g
E9	Kerkoubi	2,78a	1,28fg	1	2,21 a	42 b
E10	Batati	2,73ab	1,37cde	2	2,08b	45 a
E11	Batati	2,45ef	1,34de	2	1,84cd	42 b
E12	Kerkoubi	2,68ab	1,32ef	1	2,05b	42 b
E13	Kerkoubi	2,66bc	1,44a	2	1,84cd	46 a
E14	Bejaoui	1,76h	1,10i	1	1,59f	15 h
E15	Kerkoubi	2,45ed	1,30cde	1	1,80ed	37 d

*Means followed by the same letter are statistically different at 5% (Duncan test)

The diversity of seed (size, shape and color) for Squash *populations* which were collected from three regions (North, Center, Sahel)

Agromorphological characterization

Figure : Dendrogramme of quantitative and qualitative traits for the fifteen

local squash populations

PCA analysis of Tunisian accessions of Cucurbita maxima based on morphological data: (a) Scatter diagram of the distribution of the accessions; (b) Biplot analysis of the eigenvalues

Biochemical characterization

Ecotype	Carotenoid content (mg /gDM)	Total sugar (%)	К (%)	Mg (%)	Ca (%)
E1	161.26 b	2.72 cd	1.12 ab	1.82 a	0.74 bcd
E2	152.23 b	2.67 cd	1.48 ab	1.63 a	1.59 a
E3	161.26 b	3.37 bc	0.93 b	1.13 a	0.79 abcd
E4	286.56 a	4.59 ab	2.24 ab	1.66 a	0.89 abcd
E5	93.35 c	1.41 b	1.08 ab	1.42 a	0.13 b
E6	276.69 a	5.38 a	2.42 a	0.78 a	1.00 abc
E7	152.23 b	2.52 cd	1.48 ab	1.36 a	0.74 bcd
E8	156.08 b	2.67 cd	1.01 ab	1.28 a	1.59 a
E9	274.99 a	4.88 a	2.32 ab	1.08 a	1.37 ab
E10	157.45 b	3.37 bc	0.93 b	1.41 a	0.29 cd
E11	155.61 b	2.33 cd	1.64 ab	1.67 a	1.22 ab
E12	256.93 a	4.88 a	1.64 ab	1.36 a	0.63 bcd
E13	286.56 a	5.68 a	2.42 a	1.28 a	0.89 abcd
E14	89.99 c	2.07 cd	0.99 ab	1.08 a	0.32 cd
E15	256.93 a	5.24 a	2.42 a	1.41 a	0.89 abcd
CV (%)	12.48	21.53	45.59	57.30	48.36

Biochemical characterization

** Shelled seeds of all accessions were analysed for total phenolic contents (TPC), and total antioxidant capacity (TAC). The parameter values are showed in Table 1.

** Total phenolic content, expressed as gallic acid equivalent (GAE), ranged from 72.70 mg GAE / 100g FW (Kal2) to 228.86 (Ker5) mg GAE / 100g FW

** Antioxidant levels squash seeds ranged from 104.69 to 248.15 μmol Trolox eq / 100g FW; the highest value was found at the accession of Bejaoui from Kalaat-Andalous while the lowest content was recorded in Bejaoui vert from Siliana.

Table 1. The total phenolic content and antioxydant capacity in squash seeds

Seeds	Minimum	Maximum	Mean	Ecart-type
TPC (mg GAE/100g				
FW)		228,864	139,338	
ANTOX (µmol				
Trolox eq/100g FW)	104,699	248,15	157,792	

Molecular characterization

60 RAPD markers, 17 ISSR markers and 25 different combination of SRAP markers, were used to characterize the best fourteen squash accessions ...

96% of genetic variation between the *cucurbita maxima* accessions were recorded. Then, 477 polymorphic bands were amplified (Fig.4a et b)

The PIC values for the three types of markers, ranged between 1.04 and 0.38 for our collection for which the RAPDs marker resulted the most informative.

Figure 4. A dendrogram showing the genetic divergence among fifteen *C. maxima* accessions using cluster analysis of RAPD, ISSR and SRAP data (A) and Evaluation of PCR-labeled probes by agars gel electrophoresis (**B**).

Conclusion & recommandations

It should be pointed out that the current study revealed considerable variation in agro-morphological characters of Tunisian squash populations;

The molecular characterization of the local genetic recourses of *cucurbita maxima* collection, revealed a large variability that will help breeders to a more efficient use of the genetic variation in breeding program;

The results obtained highlighted the importance of the bioactive compounds, indicating the needs for further investigation to identify the phenolic profiles of *cucurbita maxima* seeds, that can be considered as functional foods for its nutritional and therapeutic value;

Such a research program consolidates the efforts of the NGB to conserve this genetic heritage against possible erosion

Start a varietal improvement program for this species, which has so far remained represented by standard varieties

This work was the basis of our contribution to a Mediterranean project 'Prima Pulping' in progress

